Friday, 23 March 2018

初年次ゼミ 「モーションコントロール入門---ロボットや車両を上手に動かす科学」 Ver. 18/07/09

初年次ゼミ 「モーションコントロール入門---ロボットや車両を上手に動かす科学」の詳細連絡のための掲示板

水曜4限(14:55-16:40) @駒場キャンパス KOMCEE West K401 

What's new?
18/03/23 講義計画初版を公開しました。
18/04/04 スケジュール修正しました。
18/04/25 第1回目の講義を終了し、関連資料へのリンクをはりました。
18/06/04 いくつかの作業用ファイルを追加しました。
6/13水曜日の17時から駒場食堂2階にて、丁友会主催の工学部の学科ガイダンスが開催されます。こちらをご覧になり、積極的にご参加ください!
18/06/19 堀教授の6/27, 7/4の講義に関する資料をアップロードしそれへのリンクを張りました。
18/07/09 講義アンケートに関する以下のお願いを掲載しました。
講義アンケートへのご協力のお願い
初年次ゼミの教養学部担当チームから以下のお願いが来ております。
講義アンケートへのご協力をよろしくお願いします。
  学生による授業評価アンケートは今年はITC-LMS上で行います。
    学生がwebブラウザで「ITC-LMS」にアクセスし、サインインしますと、時間割の
  欄外下の方に【初年次ゼミナール理科(共通)】というクラスが設定されています。
  こちらの授業評価アンケートに、PCもしくは携帯電話を用いて解答していただきます
  ようお願いいたします。
  (授業IDは、授業評価アンケート実施のお願いの封筒に記載されている4桁の番号です。
  UTAS上の「時間割コード」とは異なります。)

講義コード番号は 7/11の講義の際に申し上げたとおり 2363だそうです。

期末2のレポート2つの提出について

(1) 堀教授の課題レポート こちらにpdfをアップロード 締め切り 7/17 日(火曜日)正午

(2) 7/11のスライドの修正版 こちらにpdfをアップロード 締め切り  7/28土曜日 正午



 [1] 授業のタイプ 実験データ解析型

 [2] 学術分野(大分類/小分類)  工学/ 電気電子工学
キーワード: 物理 力学 運動方程式 微分方程式 動的システム 運動制御 ロボット 車両

[3] 目標、概要
す でに高校の物理で習ってきたように、目の前のものから、天体に至るまで世にあるものは力学に関する物理法則にしたがって動いている。ニュートンにより提唱 された力学の法則は数学的表現では、時間に関する二階の微分方程式の形をとり、ものをうまく動かすために、その微分方程式に基づく「動的な性質」を理解し 取り扱うことが重要になる。ものの「動的な性質」に着目して対象をモデル化し、状態を計測し、リアルタイムに情報を処理して、入力をうまく決め、「思った ように物を動かす」一連の手法を制御という。ここでは、倒立振子という、そのままでは倒れてしまうものを例題に、上手にものを動かすモーションコントロー ル=運動制御について、グループでの議論、数値計算、実験を通じて学び、数式に基づいて論理的に考えることの大切さを体験することを目的とする。

 [4] 授業の方法: 
  序盤は、高校で学んできた物理や数学の知識をもとに、動的なシステムの理解を深めるための入門的な講義を行う。推薦参考書、webからダウンロードした電 子版のテキストやスライド配布資料などを自習に活用しながら、講師の話を聞き、TAの支援を得て練習問題をやりながら、運動方程式の基本となる微分方程式 の表現や典型的な解法、それらを簡単に扱うためのラプラス変換という演算子法などの実用的に有用な手法を体験する。
 中盤には、パーソナル コンピュータを用いて、その上にある「制御系CAD」と呼ばれる計算に便利なアプリケーションを用いて、グループワークを行う。動的システムのモデルを記 述し、時間的な波形や周波数応答などを、実際に自分で数値的に計算し、様々なグラフを描く体験を通じて、動的なシステムの取り扱いや制御器を設計するとい う作業を、数値シミュレーショの中で仮想的に体験し、グループ内での議論や講師、TAとの議論を通じて、制御の面白さを感じながら、序盤で座学を通じて学 んだ物理数学的基礎や動的なシステムの取り扱いの科学に関して、さらに理解を深める。
 終盤には、グループごとに簡単な運動制御実験の中 で、実際に制御器の設計を実体験し、理論との相違や実世界における設計や計測の難しさを体験する。それらのシミュレーションや実験の結果を比較しながら、 グループの検討の成果を、レポートと発表資料の形にまとめる。最終日に小さな「研究発表」を自分たちで行い、グループ相互の質疑を体験する。

 [5] 教科書: なし ただし、参考プリント電子ファイルを本ページから配布

 [6] 参考書:
 木村英紀: 制御工学の考え方―産業革命は「制御」からはじまった 講談社(ブルーバックス) 新書   2002/12/16
 森 政弘, 小川 鉱一: 初めて学ぶ基礎制御工学? 東京電機大学出版局 2001/1
 佐藤 和也, 平元 和彦, 平田 研二: はじめての制御工学  講談社 (KS理工学専門書)
 遠山 啓 数学入門 上 下 岩波新書 -- この本は理系を志すすべての学生にお奨めです!

 [6] ガイダンス 初回講義 (初回から3回目4/18の講義)

 [7] 授業計画 

(01) 4/11 (水)全体ガイダンス(教養学部担当 大講義室

(02) 4/18(水) サイエンティック・スキル講習 (教養学部担当)

 ここでは、chrome bookを用いて、文献検索などの実習を行っただろう。あまり個人として費用をかけず(初期投資4万円くらい?)PC操作法や文献検索などに習熟したい時に、Chrome bookは確かに良い選択肢となる。この場合文書のまとめ、整理などはgoogle officeを用いると良い。
 (ちなみに、古関が個人的に2018年4月時点で使用中で、お奨めできるのはこちらの製品。)

(03) 4/25 (水) 文献検索実習 +「第1回目 モーションコントロール入門」  (担当教員 古関・ TA三好)
制御工学入門:
講義:「ダイナミック」に考えることの重要さ!
制御工学とは? 運動制御は我々の生活にどのように役立っているか? 制御の難しさと面白さ この授業の進め方
講義: 工学への数学応用は「思考の節約=手抜き法」である!
PC演習: Google, OPACなどを用いた検索方法、
     クラウドへのファイルの保管、 オンラインofficeの使い方
     Libreofficeを用いた文書の取りまとめ

4/25に講義で使用したスライドのファイルをこちらからご入手ください。(暗号化pdf パスワードは講義中に示したM##########8 です。)

(04) 5/2 (水) 「第2回目 モーションコントロール入門」 (担当教員 古関・TA 三好)
スライドを用いた自己紹介:短いプレゼンテーション演習

自己紹介に用いたスライドのファイルをこちらからこちらにアップロードしてください!

PC演習:
本年度も早い時期からOctaveを用いて数値計算する方法を体験的に学びましょう。

Octaveの基本操作とベクトル演算 Octaveを用いた練習問題、解説をこちらからご入手ください。
(ただし、これは現段階では参考資料として示すのみです。もともと3年生用の演習のための教材なので、わからないことがあっても気にする必要はありません!)

Octaveの主たるホームページ(英文)はこちら

(05) 5/9 (水) 「第3回目 モーションコントロール入門」 (担当教員 古関・TA 三好)   講義: 賢い手抜き法I: 運動方程式と運動の軌跡: 線形微分方程式の解法

(06) 5/16 (水) 「第4回目 モーションコントロール入門」 (担当教員 古関・TA 三好)
講義と演習: 賢い手抜き法II:
Octave演習続き: 運動方程式の記述を状態変数法に変換し、数値計算で運動軌跡を計算する方法

(07) 5/23 (水) 「第5回目 モーションコントロール入門」 (担当教員 古関・TA 三好)
演習: 賢い手抜き法 III:
信号の流れを図で表現する方法
振動(ばね)と減衰(ダンパ)の数学表現---複雑な現象を身近にある簡単なモデルにあてはめて考える手抜き法
複雑な現象を身近にある簡単なモデルにあてはめて考える計算法
(演習: 二次系の応答計算+ 実験教材配布)

5/23の演習の説明に用いたファイルをこちらでご覧ください。

上記のファイルのプログラム中の日本語注記が、コピーアンドペーストで流れを見ようとするとプログラム実行の障害となるため、プログラム中の注記を英語に直した同じ内容のものをこちらから入手可能とします。

(08) 6/06 (水) 「第6回目 モーションコントロール入門」 (担当教員 古関・TA  三好)
演習: 二次系の応答計算への取り組みの各班からの報告と議論

安定化制御のためのプログラム例のファイルをこちらにてご覧ください。

 ここから2回は自分たちで実験やその確認の数値計算をして、グループ発表の準備もしていただきます。皆さんの自由な取り組みによる良い発表を楽しみにしています!

(09) 6/13 (水) 「第7回目 モーションコントロール入門」 (担当教員 古関・TA 三好)
実験の体験とグループ討論: 不安定システムを安定化する I
角度および速度フィードバックゲインの設定による挙動の変化の体験 

昨年度と同じ資料になってしまいますが、ここで実験する機械に近い「台車付きの倒立振子」の力学や制御のゲインと応答の関係を計算した例についての資料を、ご参考までこちらでご覧ください。

(10) 6/20 (水) 「第8回目 モーションコントロール入門」 
実験の体験とグループ討論: 不安定システムを安定化する II
角度および速度フィードバックゲインの設定による挙動の変化の体験


実験結果を解釈、説明するための計算
グループ討論を通じた制御性能の評価と成果発表の準備(1グループ10分のプレゼンテーションの資料をまとめる作業)

☆(11) 6/27 (水) 「第9回目 モーションコントロール入門」(担当教員 堀・TA 三好)
講義:  運動方程式を簡単に解きモデルを見やすくする数学
   電気自動車の運動の理解と数学的表現

堀教授の講義にかかわる資料をこのリンクから御入手ください。(非暗号化zip 約18MB)

☆(12) 7/04 (水) 「第10回目 モーションコントロール入門」  (担当教員 堀・TA 三好) 
      電気自動車の運動制御へのフィードバック制御の応用 

(13) 7/11(水) 「第11回目 モーションコントロール入門」  (担当教員 古関・TA 三好)
グループ成果発表と討論

議論・考察のための論点
以下のキーワード、論点を参照しながらグループ内で議論をし、良いプレゼンテーションにつなげよう。

(1) 運動の安定性と不安定性----- 安定なつり合いの点と不安定なつりあいの点 とはどのようなものか?

(2) 運動の安定化におけるフィードバック制御の意味
倒立振子の例の場合: 位置のネガティブ・フィードバック 速度のネガティブフィードバック の意味 なぜししばしば、位置のみならず速度のフィードバックも必要になるのか?

(3) 倒立振子の挙動の数値計算 実験の結果とそれに基づく考察
(モデルや実験の計画をどのように考えて、どのような作業をし、どのような結果を得たか?
それらは当初の予想、期待と比べて合っているか?違っているか?
違っているとしたらその理由は何だろうか?)
<ーー実際の実験モデルのシミュレーションと実験の比較はわからないパラメータやモデルに正確には把握でき無い各種の摩擦などの影響で難しいと思いますが、基本的簡易数値計算で比例フィードバックのゲインや微分フィードバックのゲインを変化させるとどのような応答が得られるかの傾向を把握し、その予想と実際の実験で制御器のパラメータを「標準」から変化させた時の挙動の変化を比較して論じることは可能でしょう。

(4) (自主的な)発展課題
例:安定化制御でモデルが実際と異なっていると何が起こるか? 
---たとえば倒立振子の先端に重りをつけて重くしてみたらどうなるか?
安定化制御をエネルギーの流れという観点から見たら、何が言えるか?など
その他、自由に自分達で議論のための問題設定してみよう!

プレゼンテーションのガイドライン: スライド 12-14枚程度?

----<スライドの構成例>----
 表紙 (表題、グループ番号 氏名)
 はじめに (目的 特に注目した点)

内容
 問題設定
 (理論的基礎  基礎方程式 モデル)
数値計算?

実験条件
実験結果

上記、理論と実験の比較に基づく考察

まとめ、おわりに
----------------------


平成30年度 最終成果発表
スケジュールとヒント(発表12分+議論6分) 

[1] 14:55-15:15 ---4班    
[2] 15:15-15:35 ---5
[3] 15:35-16:05 ---3班   
[4] 16:05-16:15 ---1
[5] 16:15-16:35 ---2班    

+講評, 理論的考察の補足


<良い発表のためのヒント>
  1. 実験の条件、それぞれグラフのカーブが何を示しているか、を明示。
  2. 比較の際は軸のスケールをそろえて一目で量的な違いが分かるようにグラフを描く。
  3. 工夫した点をスライドのタイトルなどに盛り込む。
  4. 設計で何を考えたかを論理的に述べる。
  5. できる限り理論的な推定と実験結果を比較して話を組み立てられるとよい。(実際には実験機で分からない条件が多いためここはなかなか難しいが
[期末レポート提出のお願い(重要)]
成績評価のため、各班の代表は、上記のスライドに、7/11 の議論に基づく微修正、追記をしたものに、本講義に対するコメント、来年度の講義に向けて改善すべきことの助言を追加ページに記し、7/28 正午までにこのリンクにアップロードしてください。

[8] 学習上のアドバイス
(1) 自主的に学習に取り組もう。
(2) このページに掲げた参考文献を始め、関心を持って、制御や動的システムに関する参考書に予め目を通し、疑問に思う点をまとめて授業に参加しよう。
(3) 物理的直感を重視しながらも、数式を嫌わず、数式に基づいた合理的な議論をするよう心がけよう。
(4) 疑問に思う気持ちを大切に、恥ずかしがらず疑問に思うことは、講師や仲間に積極的に質問して、議論を通じた理解を深めよう。
(5) インターネットを通じて入手できる SciLab Octave などのツールを調査し、自分のPCにインストールして色々自分で試してみよう。

[9] 成績評価
(講義参加実績+プレゼンテーションの出来): (50%) 
+(堀先生宛レポート+期末レポート): (50%)

ご参考;
倒立振子実験キット ビュートバランサ 2
倒立振子の実験に関する南山大学の論文 論文2
倒立振子の実験に関する沼津高専の論文
関連ソフトのダウンロードのページ
システム情報制御学会の特集記事のページ

No comments: